Um das bisher schwierig fassbare Verhalten und die Stabilität komplexer Metallverbindungen in wässrigen Lösungen, sogenannter "POMs", aufzudecken, haben Forscher*innen an der Universität Wien einen Speziationsatlas entwickelt, der aktuell in Science Advances veröffentlicht wurde. Dieser Durchbruch hat das Potenzial, neue Entdeckungen und Fortschritte in Bereichen wie Katalyse, Medizin und weiteren Disziplinen voranzutreiben.
Metallatome können mit Sauerstoff winzige 3D-Strukturen bilden, komplizierte Gerüste, die wie Drahtmandalas aussehen und als "Polyoxometallate" oder kurz "POMs" bezeichnet werden. Diese POMs sind nützlich zur Kontrolle chemischer Reaktionen in Chemie, Biologie oder Materialwissenschaften. Ihre Struktur ist jedoch äußerst variabel und hängt von winzigen Veränderungen in ihrer Umgebung ab, was es für Forscher*innen sehr schwierig macht, ihre Struktur und damit ihre Funktion für verschiedene Anwendungen, von der Medizin bis zur Umweltsanierung, vorherzusagen.
Nadiia Gumerova und Annette Rompel von der Fakultät für Chemie an der Universität Wien haben nun einen sogenannten "Speziationsatlas" entwickelt, eine Art Spickzettel, der es Forscher*innen ermöglicht, die erwartete Struktur und das Verhalten von zehn gängigen POMs für beliebige chemische Bedingungen genau zu bestimmen. Konkret handelt es sich bei diesem Atlas um eine Datenbank, die ein vorhersagendes Modell enthält, das auch auf andere als die zehn ausgewählten POMs erweitert werden kann. Dadurch werden POM-Artenverteilungen, Stabilität und katalytische Aktivität unter Berücksichtigung von Faktoren wie pH-Wert, Temperatur, Inkubationszeit, Pufferlösungen, reduzierenden oder chelatbildenden Substanzen und ionischer Stärke ermittelt.
Um zukünftige Forschung weiter zu unterstützen, haben Gumerova und Rompel auch eine "Roadmap" für andere Wissenschafter*innen entwickelt, die Experimente mit eigenen POMs durchführen: Durch Auswahl stabiler POM-Varianten, Auflistung der Anwendungssystemparameter und Durchführung sogenannter "POM-Speziationsstudien" – Experimente, die die Veränderung der POM-Struktur unter veränderten Bedingungen aufzeigen – können Forscher*innen sicherstellen, dass sie die genauesten Ergebnisse erhalten und POMs optimal für ihre Arbeit nutzen.
"Der Speziationsatlas für POMs stellt einen bedeutenden Fortschritt in unserem Verständnis dieser komplexen Metallverbindungen dar. Daraus gewonnene Erkenntnisse haben das Potenzial, neue Entdeckungen und Fortschritte in Katalyse, Biologie, Medizin und darüber hinaus voranzutreiben", so Annette Rompel.
Publikation in Science Advances:
Nadiia Gumerova and Annette Rompel. Speciation atlas of polyoxometalates in aqueous solutions, Science Advances (2023)
DOI: 10.1126/sciadv.adi0814
Über die Universität Wien
Die Universität Wien ist eine der ältesten und größten Universitäten Europas und damit die größte Forschungsinstitution und Bildungsstätte Österreichs. Rund 7.500 Wissenschafter*innen arbeiten vernetzt an 20 Fakultäten und Zentren an neuen Lösungen und leisten einen wichtigen Beitrag zur Weiterentwicklung der Gesellschaft. Die Universität Wien kooperiert mit Wirtschaft, Kultur und Gesellschaft. Forscher*innen, Studierende und Lehrende vereint das Ziel, mit unermüdlicher Neugier Innovationen zu entdecken. In ihrer Lehre mit einer Fächervielfalt von 184 Studien bereitet die Universität Wien jährlich rund 10.000 Absolvent*innen auf ihre Berufslaufbahn vor und regt sie zu kritischem Denken und selbstbestimmtem Handeln an.
Wissenschaftlicher Kontakt
Univ. Prof. Dr. Annette Rompel
Institut für Biophysikalische Chemie, Universität Wien
1090 Wien, Josef-Holaubek-Platz 2
T +43-1-4277-52502
annette.rompel(at)univie.ac.at
www.univie.ac.at
Rückfragehinweis
Mag. Alexandra Frey
Media Relations Managerin, Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-8175675
alexandra.frey(at)univie.ac.at
www.univie.ac.at