GMI: Immunsystem von Pflanzen erkennt Bakterien an kleinen Fettsäuremolekülen

Wie Pflanzen sich zur Wehr setzen

Nicht nur Menschen und Tiere, auch Pflanzen wehren sich mit Hilfe ihres Immunsystems gegen Krankheitserreger. Doch wodurch wird die zelluläre Abwehr aktiviert? Ein internationales Forscherteam, koordiniert von der Technischen Universität München (TUM), hat jetzt herausgefunden, dass Rezeptoren in Pflanzenzellen Bakterien an Hand einfacher molekularer Bausteine identifizieren.

„Das Immunsystem der Pflanzen ist raffinierter, als wir gedacht haben“, sagt Dr. Stefanie Ranf vom Lehrstuhl für Phytopathologie der TU München. Zusammen mit einem internationalen Forschungsteam, dem auch Youssef Belkhadir und Elwira Smakowska-Luzan vom Gregor Mendel Institut für Molekulare Pflanzenbiologie der Österreichischen Akademie der Wissenschaften angehören, hat die Biochemikerin Substanzen entdeckt, die die pflanzliche Abwehr aktivieren.

Bisher war die Wissenschaft davon ausgegangen, dass die Zellen von Pflanzen – ähnlich wie die von Menschen und Tieren – Bakterien an komplexen molekularen Verbindungen, beispielsweise aus der Bakterienzellwand erkennen. Vor allem bestimmte Moleküle mit einem fettähnlichen Teil und mehreren Zucker-Bausteinen, die sogenannten Lipopolysaccharide, kurz LPS, standen im Verdacht, eine Immunantwort auszulösen.

2015 war es Ranfs Team gelungen, das entsprechende Rezeptor-Protein aufzuspüren: das LipoOligosaccharide-specific Reduced Elicitation, kurz LORE. Alle Experimente deuteten darauf hin, dass dieses LORE-Protein das Immunsystem der Pflanzenzelle aktiviert, wenn es LPS-Moleküle aus der Zellwand bestimmter Bakterien erkennt.

Ein Misserfolg führt auf die richtige Fährte

„Die Überraschung kam, als wir dieses Rezeptor-Protein genauer untersuchen wollten“, erinnert sich Ranf. „Unser Ziel war es herauszufinden, wie LORE verschiedene LPS-Moleküle unterscheidet. Dazu benötigten wir hochreines LPS.“

Bei der Analyse stellten die Forschenden fest, dass nur LPS-Proben mit bestimmten kurzen Fettsäurebestandteilen die Pflanzenabwehr auslösten. Überraschenderweise fanden sie in all diesen aktiven LPS-Proben auch freie Fettsäuremoleküle, die extrem stark haften. Erst nach monatelangem Experimentieren gelang es dem Team, diese freien Fettsäuren vom LPS abzutrennen.

„Als es uns dann endlich gelungen war, hochreines LPS herzustellen, zeigte sich, dass die Pflanzenzelle darauf überhaupt nicht reagiert. Damit war klar, dass die Immunantwort nicht durch das LPS selbst ausgelöst wird, sondern durch den Kontakt mit den daran haftenden 3-hydroxyfettsäuremolekülen“, so Ranf.

Bakterien-Bausteine im Visier

Die 3-Hydroxyfettsäuren sind im Vergleich zu den großen LPS sehr einfache chemische Bausteine. Sie werden von Bakterien in großen Mengen hergestellt und in unterschiedlichste Komponenten eingebaut. Die Fettsäure-Bausteine sind für die Bakterien unverzichtbar.

„Die Strategie der Pflanzenzellen, Bakterien an Hand dieser Grundbausteine zu identifizieren, ist äußerst raffiniert, denn die Bakterien brauchen die 3-Hydroxyfettsäuren und können somit die Immunantwort nicht umgehen“, resümiert Ranf.

Fitnessprogramm für Pflanzen

Die Forschungsergebnisse könnten künftig helfen, Pflanzen mit verbesserter Immunreaktion zu züchten oder gentechnisch herzustellen. Denkbar ist auch, dass man Pflanzen gezielt mit 3-Hydroxyfettsäuren behandelt, um ihre Abwehrkräfte gegen Krankheitserreger zu verbessern.

Publikation:

Bacterial medium chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants
Alexander Kutschera, Corinna Dawid, Nicolas Gisch, Christian Schmid, Lars Raasch, Tim Gerster, Milena Schäffer, Elwira Smakowska-Luzan, Youssef Belkhadir, A. Corina Vlot, Courtney E. Chandler, Romain Schellenberger, Dominik Schwudke, Robert K. Ernst, Stéphan Dorey, Ralph Hückelhoven, Thomas Hofmann, Stefanie Ranf
Science, April 12, 2019 – DOI: 10.1126/science.aau1279
LINK: https://science.sciencemag.org/cgi/doi/10.1126/science.aau1279

Mehr Informationen:

Die Arbeit entstand durch eine internationale und interdisziplinäre Kooperation von Pflanzen-Molekularbiologen, Chemikern und Mikrobiologen. Beteiligt waren neben dem Lehrstuhl für Phytopathologie und dem Lehrstuhl für Lebensmittelchemie und molekulare Sensorik der TUM das Forschungszentrum Borstel (Leibniz Lungenzentrum), das Helmholtz Zentrum München, das österreichische Gregor Mendel Institut für Molekulare Pflanzenbiologie, die Universität von Maryland/USA, sowie die französische Universität von Reims Champagne-Ardenne.

Über das Gregor Mendel Institut

Das Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI) wurde von der Österreichischen Akademie der Wissenschaften (ÖAW) im Jahr 2000 gegründet, um Spitzenforschung in der molekularen Pflanzenbiologie zu fördern. Das GMI gehört zu den weltweit wichtigsten Pflanzenforschungseinrichtungen. Mit mehr als 130 MitarbeiterInnen aus 35 Ländern erforscht das GMI primär die Grundlagen der Pflanzenbiologie, vor allem molekulargenetische Aspekte wie epigenetische Mechanismen, Populationsgenetik, Chromosomenbiologie, Stressresistenz und Entwicklungsbiologie. Das GMI befindet sich in einem modernen Laborgebäude der Österreichischen Akademie der Wissenschaften auf dem Campus des Vienna BioCenter, auf dem mehrere Forschungsinstitute sowie Biotechnologie-Firmen angesiedelt sind.

Die inhaltliche Verantwortung für diesen Beitrag liegt ausschließlich beim Aussender. Beiträge können Vorhersagen enthalten, die auf Erwartungen an zukünftige Ereignisse beruhen, die zur Zeit der Erstellung des Beitrags in Aussicht standen. Bitte verlassen Sie sich nicht auf diese zukunftsgerichteten Aussagen.

Als Life Sciences Organisation mit Sitz in Wien möchten Sie, dass LISAvienna auf Ihre News und Events hinweist? Senden Sie uns einfach Ihre Beiträge an news(at)lisavienna.at.