„Es ist durchaus vorstellbar, dass es in Zukunft möglich sein wird, aus dieser Substanz einen biologischen Klebstoff für menschliches Gewebe zu machen, mit dem beispielsweise Sehnen und Bänder metallfrei am Knochen verankert werden können“, umreißt Projektleiterin Sylvia Nürnberger von der Universitätsklink für Unfallchirurgie die Zielsetzung der Forschungen im 2016 gestarteten und durch den Wissenschaftsfonds FWF geförderten Projekt, das zugleich auch Teil der COST-Action der Europäischen Union ist.
COST ist ein europäisches Netzwerk zur Kooperation von nationalen und internationalen Forschungsaktivitäten in Wissenschaft und Technologie, darunter jenes für Bioadhäsion. Das EU-Netzwerk „Bioklebstoffe“, koordiniert vom Ludwig Boltzmann Institut für experimentelle und klinische Traumatologie, umfasst derzeit 150 ForscherInnen aus 30 Ländern.
Im Rahmen dieses Projekts untersucht Nürnberger gemeinsam mit Martina Marchetti-Deschmann von der Technischen Universität Wien die Zusammensetzung des natürlichen Dübels der Zecken und wie er als Vorlage für neue Gewebekleber dienen könnte. „Die derzeit verwendeten Gewebekleber in der Chirurgie, die etwa bei schweren Hautverletzungen oder Leberrissen verwendet werden, sind teilweise toxisch“, erklärt die MedUni Wien-Forscherin. Andere Klebstoffe sind wiederum zu schwach. Biologische Alternativen wären deshalb optimal. Das Forschungsprojekt soll dazu beitragen, neue Alternativen und Anwendungen zu bestehenden Klebstoffprodukten für Haut, Knorpel, Bänder oder Sehnen zu finden.
Derzeit werden rund 300 Zecken aus Österreich und deren „Zement“ an der MedUni Wien analysiert und untersucht. Dabei stechen die Tiere durch eine hautähnliche Membran, wobei der Klebstoff abgesondert und ausgehärtet wird. Noch in diesem Jahr sollen in Südafrika Riesenzecken für diesen Zweck untersucht werden.
Weitere mögliche biologische Klebstoffspender
Mit den Haftfäden der Miesmuschel, deren Haftmolekül DOPA (eine Veränderung der Aminosäure Tyrosin) sich bereits in der präklinischen Testphase befindet, ist es internationalen Forschergruppen bereits gelungen, alternative Klebstoffe nachzubauen und herzustellen. „Der DOPA-Haftmechanismus ist aber aufgrund der geringen Haftstärke nicht für alle medizinischen Bereiche geeignet, sodass weiterhin Bedarf an neuen Klebstoffen besteht“, erklärt Nürnberger.
Weitere potenzielle „Klebstoffspender“ sind u.a. Seegurken, die Klebstofffäden auf ihre Beute schleudern; Salamander-Arten, die blitzschnell aushärtenden Klebstoff aus Hautdrüsen absondern, wenn sie angegriffen werden; oder Insektenlarven, die Fangfäden produzieren und Krebse, die sogar unter Wasser „kleben“ bleiben.
Link zum Projekt: http://www.cost.eu/COST_Actions/ca/CA15216