Mit Hilfe von Machine Learning gelang es den Arbeitsgruppen von Sylvia Knapp und Konrad Hötzenecker, zu zeigen, dass bestimmte Mikrobiom-Profile der Lunge nach einer Lungentransplantation prognostische Information geben können. „Das heißt, diese Methode erlaubt uns, Hinweise auf zukünftige Lungenfunktionsänderungen zu geben – und könnte somit zu einer früheren Erkennung von RisikopatientInnen beitragen“, betont Knapp. Von CLAD sind bis zu 50 Prozent der Lungentransplantierten innerhalb der ersten fünf Jahre nach dem Eingriff betroffen.
Auch Vorerkrankungen bestimmen das Lungenmikrobiom nach Transplantation
„Wir haben uns engmaschig angeschaut, wie sich das Milieu der unteren Luftwege in transplantierten Lungen von insgesamt 78 PatientInnen im Verlauf nach einer Operation verändert und an den neuen Wirt anpasst. So haben wir untersucht, welche Bakterien, welche Immunzellen und welche Metaboliten vorkommen, und wie sich diese in ihrem neuen Wirt verändern“, erklärt Knapp.
Dabei konnten die ForscherInnen zeigen, dass sich das Lungenmikrobiom kontinuierlich ändert, bis schließlich Empfänger-spezifische Faktoren – wie etwa Alter, Geschlecht, Grunderkrankung – langfristig das Mikrobiom definieren. Zudem entdeckten die WissenschafterInnen, dass bestimmte Keime, die bei manchen Lungenerkrankungen vor Transplantationen gehäuft vorkommen (z.B. bei zystischer Fibrose), auch nach der Transplantation wieder in die ansonsten gesunde Lunge einziehen und sich etablieren können. Conclusio: „Das heißt, auch Vorerkrankungen des transplantierten Patienten bzw. der Patientin bestimmen das Lungenmikrobiom nach Transplantation.“
Die Veränderungen der Lungenfunktion konnten mit Hilfe von Künstlicher Intelligenz in Form von Machine Learning und einer Analyse der Multiomics-Daten – neben dem Mikrobiom wurden auch das Lipidom (Fettmuster), das Metabolom (Stoffwechsel-Bausteine der Zellen) und klinische Parameter herangezogen – prognostiziert werden. „Unsere Berechnungen zeigen daher tatsächlich, dass bestimmte Mikrobiom-Profile eine prognostische Information geben“, fassen Knapp und Hötzenecker zusammen.
Service: European Respiratory Journal
“Multi-omics profiling predicts allograft function after lung transplantation”. Martin L. Watzenböck, Anna-Dorothea Gorki, Federica Quattrone, Riem Gawish, Stefan Schwarz, Christopher Lambers, Peter Jaksch, Karin Lakovits, Sophie Zahalka, Nina Rahimi, Philipp Starkl, Dörte Symmank, Tyler Artner, Céline Pattaroni, Nikolaus Fortelny, Kristaps Klavins, Florian Frommlet, Benjamin J. Marsland, Konrad Hoetzenecker, Stefanie Widder, Sylvia Knapp. European Respiratory Journal 2021; DOI: 10.1183/13993003.03292-2020.
LINK: https://erj.ersjournals.com/content/early/2021/06/10/13993003.03292-2020.