IMP: Wiener Wissenschaftler entschlüsseln die Gehirnaktivität des Fadenwurms

Wissenschaftler des Forschungsinstituts für Molekulare Pathologie (IMP) zeigen erstmals, wie die Aktivität von Nervenzell-Netzen im gesamten Gehirn eines Tieres dessen Verhalten steuert.

Manuel Zimmer und sein Team liefern neue Erkenntnisse zur gehirnweiten Aktivität der Nervenzellen des Fadenswurms Caenorhabditis elegans. Die Forscher konnten zeigen, dass die über das gesamte Gehirn verteilten und als Netzwerk organisierten Nervenzellen (Neuronen) zwar verschiedene Funktionen ausführen, aber im Kollektiv aktiv sind. Aus der aufeinander abgestimmten Aktivität einzelner Neuronengruppen konnten eindeutig die Verhaltensabsichten des Tieres abgelesen werden. Das Wissenschaftsjournal Cell präsentiert die Ergebnisse der Studie in seiner aktuellen Ausgabe. Die Funktionsweise des Gehirns ist eines der spannendsten Rätsel der aktuellen Forschung. Eine der größten Herausforderungen stellt dabei die Komplexität von Nervensystemen dar. So besteht zum Beispiel ein Mäusegehirn aus Millionen von Neuronen, die auf komplizierte Art miteinander verknüpft sind. Im Gegensatz dazu besitzt der etwa ein Millimeter lange Fadenwurm ein Nervensystem, das exakt 302 Nervenzellen umfasst. Aufgrund seiner einfachen Handhabung im Labor und seiner entwicklungsbiologischen Eigenschaften ist er ein wichtiger Modellorganismus für die Grundlagenforschung. Seit fast 30 Jahren weiß man, wie die einzelnen Nervenzellen im Gehirn des Wurms miteinander verknüpft sind und kennt somit seine neuronalen Schaltkreise, die ähnlich komplex aufgebaut sind wie bei größeren Organismen.

Zusammenspiel von Neuronengruppen im Netzwerkverband
Bisher konzentrierte sich die Forschung auf die Funktionen einzelner oder weniger Nervenzellen und deren Zusammenwirken, um Verhaltensweisen wie Bewegungen zu erklären. Beim Wurm wusste man bereits, wie einzelne Neuronen als isolierte Untereinheiten im Netzwerk funktionieren, jedoch nicht, wie sich Neuronengruppen untereinander koordinieren. Hier setzte Manuel Zimmer, Gruppenleiter am IMP, mit seinem Team an und bediente sich richtungsweisender Technologien: Er verwendete einerseits moderne 3D-Mikroskopiemethoden zur schnellen, gleichzeitigen Messung verschiedener Gehirnareale. Andererseits arbeitete er für seine Versuche mit Würmern, die durch Einbau eines Kalziumsensors bei Aktivität leuchten. „Diese Kombination war für uns genial, denn sie ermöglichte eine gehirnweite Einzelzell- Auflösung unserer Aufnahmen in Echtzeit“, erklärt Zimmer die Vorteile seines Ansatzes.

Würmer beim Denken beobachten
Zimmer und sein Team testeten die Reaktion der Tiere auf Futterentzug und setzten sie dann bestimmten Reizen von außen aus. Unter dem Mikroskop bot sich den Forschern ein faszinierendes Bild: „Über das gesamte Gehirn verteilt sahen wir, dass ein Großteil der Neuronen stetig aktiv sind und sich koordinieren. Sie agieren wie in einem Ensemble“, erklärt Postdoktorand Saul Kato, gemeinsam mit dem Doktoranden Harris Kaplan und der Doktorandin Tina Schrödel Teil des Teams, das die Arbeit maßgeblich vorantrieb. Die Tiere konnten sich bei diesen Versuchen nicht bewegen, ihre Reaktionen waren somit reine Gedankenspiele.

Mit einer anderen Mikroskopiertechnik, entwickelt für frei bewegliche Würmer, konnten die Forscher herausfinden, welche Neuronen die Kommandos zur Ausführung einzelner Verhaltensabläufe erteilen. Zwischen bestimmten Netzwerkaktivitäten und dem Impuls für Bewegungen sahen sie eindeutige Zusammenhänge und konnten den Tieren somit regelrecht beim Denken zuschauen. Nicht nur kurze Bewegungen, sondern auch wie diese im Gehirn wie beispielsweise bei der Futtersuche zu längeren Verhaltensstrategien zusammengefügt werden, konnten sie so analysieren. „Das ist bisher noch niemandem gelungen“, so Zimmer. Ähnliche neurale Aktivitätsmuster wurden zwar auch bei höher organisierten Tieren entdeckt, doch die Forscher konnten immer nur einen kleinen Teil aller Nervenzellen in Unterbereichen des Gehirns untersuchen. Zimmer und seine Mitarbeiter sind überzeugt, dass im Fadenwurm – obwohl nur sehr entfernt verwandt mit den Säugetieren – grundlegende Prinzipen der Gehirnfunktion präzise beschrieben werden können.

Untersuchung der molekularen Mechanismen
Noch sind in der Neurobiologie viele spannende Fragen unbeantwortet. Etwa die der Entscheidungsfindung oder ob das Gehirn formale Rechenschritte durchführt und damit einem Computer ähnelt. Zimmer möchte in einem nächsten Schritt erst einmal die molekularen Mechanismen analysieren, die den von ihm untersuchten Prozessen zugrunde liegen. „Interessant wäre es natürlich auch, langanhaltende Zustände im Gehirn wie Schlafen und Wachsein genauer zu untersuchen“, so der Forscher.

Originalpublikation

Kato et al., Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans, Cell(2015), dx.doi.org/10.1016/j.cell.2015.09.034

Die inhaltliche Verantwortung für diesen Beitrag liegt ausschließlich beim Aussender. Beiträge können Vorhersagen enthalten, die auf Erwartungen an zukünftige Ereignisse beruhen, die zur Zeit der Erstellung des Beitrags in Aussicht standen. Bitte verlassen Sie sich nicht auf diese zukunftsgerichteten Aussagen.

Als Life Sciences Organisation mit Sitz in Wien möchten Sie, dass LISAvienna auf Ihre News und Events hinweist? Senden Sie uns einfach Ihre Beiträge an news(at)lisavienna.at.