GMI: Lockdown für Genom-Parasiten

Wiener Forscherinnen und Forscher entdecken einen Mechanismus, der Genome vor Schäden durch „springende Gene“ schützt: Die Schutzverpackung kommt per „DHL“

Einen ausgeklügelten Mechanismus, mit dem die Integrität eines Genoms bewahrt wird, haben jetzt Forscherinnen und Forscher am Wiener Gregor Mendel Institut für Molekulare Pflanzenbiologie der Österreichischen Akademie der Wissenschaften (GMI) mit Hilfe der Modellpflanze Arabidopsis aufgedeckt. Die Arbeit wurde in der renommierten Fachzeitschrift Nature Cell Biology veröffentlicht.

Ist es möglich, dass ein einziges Genprodukt unerwünschte genetische Elemente zum Schweigen bringt? Kann ein derartig starker Effekt bei der Regulierung von Transposons (DNA-Abschnitte, die ihre Position im Genom als „springende Gene“ ändern können), also Genom-Parasiten, beobachtet werden? Wenn ja, wie hält dieses Genprodukt im Alleingang Transposons in Schach? Neue Forschungsergebnisse aus der Gruppe von Frédéric Berger am GMI geben jetzt Antworten auf all diese Fragen. Sie analysieren einen Mechanismus des Gen-Silencing (eine Stilllegung von in den Genen steckenden Erbinformationen), der lange Zeit im Dunkeln lag.

Genom-Parasiten

Wenn man die Evolution betrachtet, fördern springende Gene die genomische Variation. Auf einen einzelnen Organismus sind ihre Auswirkungen jedoch massiv schädlich. Wenn die springenden Gene unreguliert bleiben, können sie zu genomischer Instabilität und verschiedenen Krankheiten führen. Mit der Modellpflanze Arabidopsis wurde gezeigt, dass der Funktionsverlust eines einzigen Genprodukts, das vor 30 Jahren identifiziert wurde, zu umfangreichen und unkontrollierbaren Transpositionsereignissen führt. Dieses Genprodukt, Decreased DNA Methylation I (DDM1), ist ein Chromatin-Remodeler. Es hilft dabei, die DNA dicht gepackt zu halten, um Transposons zum Schweigen zu bringen. Die Verpackung des Erbguts erfolgt durch konservierte Verpackungsproteine, die das Chromatin bil-den. Die am häufigsten vorkommende DNA-Verpackungsproteine sind Histonen. Der zugrundeliegende Mechanismus der Transposonstillegung durch DDM1 war aber immer noch unbekannt.

Gefangen, bevor sie springen!

Das Team um GMI-Gruppenleiter Frédéric Berger mit den Co-Erstautoren Akihisa Osakabe und Bhagyshree Jamge hat nun den molekularen Wirkmechanismus von DDM1 beschrieben. Sie zeigen, dass DDM1 auf Transposons abzielt, indem es H2A.W bindet, eine Variante des Histons H2A – einer der Bausteine, die die DNA umhüllen und das dicht gepackte Chromatin bilden. Das Team entdeckte, dass die Ablagerung von H2A.W durch DDM1 auf DNA-Regionen, die reich an Transposons sind, nicht nur notwendig, sondern auch ausreichend ist, um das Chromatin zu remodellieren und die Transposons zum Schweigen zu bringen.

Die Forscherinnen und Forscher zeigten, dass dieser Mechanismus andere bekannte Transposon-Silencing-Mechanismen in der Arabidopsis bei weitem dominiert. Die Wirkung von DDM1 ist spezifisch für springende Gene mit intaktem Transposon-Potenzial, also für potenziell springende Gene. "Transposons teilen das Chromatin mit dem Wirt. Sie können als Feinde betrachtet werden, die sich in Häusern verstecken. Was unterscheidet diese Häuser von denen, die proteinkodierende Gene beherbergen? Das Material, das zum Bau dieser Häuser verwendet wird, ist anders: Es umschließt die Transposons so, dass sie nicht hinausgehen und sich vermehren können", sagt Frédéric Berger.

Der beschriebene Silencing-Mechanismus betrifft weder Fragmente von springenden Genen, die ihre Fähigkeit zur Transposition verloren haben, noch proteinkodierende Gene. Frédéric Berger zögert nicht, den Mechanismus mit etwas Humor zu beschreiben: "Im Grunde genommen lautet die Strategie: Schließe deinen Feind in Bausteinen aus speziellem Material ein und schicke ihn in die Hölle!".

Per DHL verpackt in die Hölle geschickt

Die Assoziation mit der Hölle kommt von "Hells", dem Namen des menschlichen Gegenstücks (Ortholog) von DDM1 bei der Arabidopsis. Die Forscherinnen und Forscher schlagen jetzt eine neue Klasse von Chromatin-Remodelern vor: Diese soll DDM1, Hells und ihr Maus-Ortholog Lsh in eine Gruppe zusammenfassen, die sie "DHL" nennen. Die DHL-Chromatin-Remodeler zeigen konservierte Bindungsstellen für die Histonvarianten. Darüber hinaus wurden alle drei Remodeler mit genomischer Instabilität und Krankheiten in ihren jeweiligen Organismen in Verbindung gebracht, falls Mutationen zu ihrem Funktionsverlust führen.

DHL-Remodeler kontrollieren die Dynamik von Transposons

DDM1 ist der Schlüsselfaktor, der Transposons vor der Transkriptionsmaschinerie "tarnt", indem er spezielle "Bausteine" verwendet, die ihre Erkennung verhindern. Auf die Frage nach den weiteren Auswirkungen dieses neuartigen Mechanismus antwortet Frédéric Berger: "DDM1-Orthologe in Säugetieren deponieren die H2A.W-Ortholog-Variante macroH2A, die bei verschiedenen menschlichen Syndromen und Krebserkrankungen eine Rolle spielt. Ein besserer Einblick in den Wirkmechanismus dieser Klasse von Histonbindungsproteinen wird unser Verständnis der Genomdynamik mit Auswirkungen auf Medizin und Evolution voranbringen.“

Engineering von Silencing-Mechanismen in Hefe

Frédéric Berger, der vom Wissenschaftsfonds FWF im Rahmen des 1000-Ideen-Programms für völlig neue und gewagte Forschungsideen unterstützt wird, untersucht bereits emergente Eigenschaften dieser Histon-Varianten und Chromatin-Remodeler. Er konstruiert neuartige Silencing-Wege in Hefe, die auf Arabidopsis H2A.W und DDM1 basieren.

Originalpublikation:

Osakabe, Jamge et al., "The chromatin remodeler DDM1 prevents transposon mobility through deposition of histone variant H2A.W", Nature Cell Biology, 2021. DOI: https://dx.doi.org/10.1038/s41556-021-00658-1

Über das GMI

Das Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI) wurde von der Österreichischen Akademie der Wissenschaften (ÖAW) im Jahr 2000 gegründet, um Spitzenforschung in der molekularen Pflanzenbiologie zu fördern. Das GMI gehört zu den weltweit wichtigsten Pflanzenforschungseinrichtungen. Mit mehr als 130 Mitarbeiterinnen und Mitarbeitern aus 35 Ländern erforschen die neun Forschungsgruppen des GMI Grundlagen der Pflanzenbiologie, vor allem molekulargenetische Aspekte wie epigenetische Mechanismen, Populationsgenetik, Zellbiologie, Stressresistenz und Entwicklungsbiologie. Das GMI befindet sich am Vienna BioCenter, einem der führenden Life-Science-Standorte Europas.

Die inhaltliche Verantwortung für diesen Beitrag liegt ausschließlich beim Aussender. Beiträge können Vorhersagen enthalten, die auf Erwartungen an zukünftige Ereignisse beruhen, die zur Zeit der Erstellung des Beitrags in Aussicht standen. Bitte verlassen Sie sich nicht auf diese zukunftsgerichteten Aussagen.

Als Life Sciences Organisation mit Sitz in Wien möchten Sie, dass LISAvienna auf Ihre News und Events hinweist? Senden Sie uns einfach Ihre Beiträge an news(at)lisavienna.at.