GMI: Facebook und Twitter bei Pflanzen

Wie gleichen sich Proteine in den Zellen einer Blütenpflanze und soziale Netzwerke auf Twitter und Facebook? Und was haben sie mit Pathogenen, die Pflanzen oder Menschen krank machen, gemeinsam?

Forscher entdeckten mit den Methoden der Social-Media Analyse bisher unbekannte Angriffsziele von Krankheitserregern in Pflanzen - mögliche Anwendung auch bei der Entwicklung gezielter Therapien beim Menschen.

Shahid Mukhtar und seine Kollegen an der University of Alabama at Birmingham haben sich mit diesen Fragen in einer Gemeinschaftsstudie mit Youssef Belkhadir vom Wiener Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI) der Österreichischen Akademie der Wissenschaften beschäftigt. Die Forscher haben bisher unbekannte Protein-Ziele von Pflanzen-Pathogenen in der Blütenpflanze Ackerschmalwand (Arabidopsis thaliana) identifiziert. Dabei haben sie einige Methoden angewendet, die auch bei der Analyse von Sozialen Netzwerken im Einsatz sind. Ihr neuer Ansatz könnte laut den Forschern auch dabei helfen, andere Interaktionen zwischen biologischen Arten zu analysieren um neue Angriffspunkte für Krankheitserreger zu entdecken.

In Sozialen Netzwerken kann man die Verbindungen zwischen Followern oder Freunden auf Twitter und Facebook aufzeichnen: Wenige Leute haben eine sehr große Anzahl von Verbindungen, manche haben viele, und die meisten haben sehr wenige Verbindungen. Eine Karte dieser Verbindungen sieht aus wie ein Flugstreckenplan. Diese Pläne zeigen zentrale Knotenpunkte und Engstellen. Sie können aber auch feststellen, wer die Personen sind, die Informationen am besten streuen. In der Biologie kann die Analyse der Netzwerkarchitektur eines Ökosystems oder von Makromolekülen in den Zellen helfen, neue Komponenten in diesen komplexen Systemen zu finden und damit neue biologische Erkenntnisse und überprüfbare Hypothesen gewonnen werden.

Eines dieser Netzwerke existiert auf der Oberfläche von Pflanzenzellen zwischen den Rezeptoren, die zur Entdeckung und Bekämpfung von Angriffen und Bedrohungen aus der Umwelt dienen. Dies betrifft vor allem Krankheitserreger. Wenn Pathogene eine Pflanze angreifen, injizieren sie spezielle Proteine in die Pflanze, die man Effektoren nennt. Dadurch ermöglichen sie die Infektion und ändern den Metabolismus der Pflanze zum Nutzen des Krankheitserregers. In einer in Nature Communications publizierten Studie zeigten die Forscher, wie mit Netzwerk-Biologie bisher unbekannte Rezeptoren entdeckt werden können, die von Effektoren angegriffen werden.

Das Team untersuchte zuerst die Interaktionen zwischen allen Proteinen in der Zelle. Dabei zeigte sich, dass nur 6,5 Prozent der großen Knotenpunkte bereits bekannte Ziele der Angreifer waren. Daher sind die Knotenpunkte schlecht um neue Ziele zu finden. Statt auf Knotenpunkte fokussierten sich die Forscher auf Informationsverbreiter durch die Verwendung einer Methode namens „k-shell decomposition“, die den neuesten Analysemethoden von Sozialen Netzwerken ähnelt. Im Gegensatz zu den Knotenpunkten waren 33 Prozent der besten Informationsverbreiter Effektorziele.

Dann untersuchten sie mit dieser Methode das Rezeptoren-Netzwerk, um dort neue Effektorziele zu finden. Von den mehr als 500 Proteinen des Rezeptorennetzwerkes sind 35 als Informationsverbreiter bekannt. 20 dieser Proteine wurden auf ihre Interaktionen mit unterschiedlichen Pathogen-Effektoren untersucht. Dabei fanden sie acht direkte Effektorziele, sieben davon waren bisher noch nicht als Effektorziele bekannt. Eine wesentliche Entdeckung dabei war, dass sich bei allen sieben eine Auswirkung auf das Pathogenen-Wachstum zeigte, wenn die Proteine mutiert wurden.

Dieser Netzwerk-zentrierte Zugang zur Identifizierung bisher unbekannter Angriffsziele von Pathogenen, so die Forscher, habe ein vielversprechendes Potenzial, auch zur Analyse anderer Interaktions-Netzwerke, wie z.B. der Protein-Protein Interaktion beim Menschen. Man könnte neue Pathogen-Andockstellen finden und damit auch das Design von gezielten therapeutischen Strategien unterstützen.

Finanziert wurde die Studie durch die National Science Foundation der USA und die Österreichische Akademie der Wissenschaften.

Ahmed H, Howton TC, Sun Y, Weinberger N, Beklhadir Y, Mukhtar MS (2018) Network biology discovers pathogen contact points in host protein-protein interactomes. Nature Comm:2312.

Über das GMI

Das Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI) wurde von der Österreichischen Akademie der Wissenschaften (ÖAW) im Jahr 2000 gegründet, um Spitzenforschung in der molekularen Pflanzenbiologie zu fördern. Das GMI gehört zu den weltweit wichtigsten Pflanzenforschungseinrichtungen. Mit mehr als 130 Mitarbeiterinnen und Mitarbeitern aus 35 Ländern erforscht das GMI primär die Grundlagen der Pflanzenbiologie, vor allem molekulargenetische Aspekte wie epigenetische Mechanismen, Populationsgenetik, Chromosomenbiologie, Stressresistenz und Entwicklungsbiologie. Das GMI befindet sich in einem modernen Laborgebäude der Österreichischen Akademie der Wissenschaften auf dem Campus des Vienna BioCenter, auf dem mehrere Forschungsinstitute sowie Biotechnologie-Firmen angesiedelt sind.

Die inhaltliche Verantwortung für diesen Beitrag liegt ausschließlich beim Aussender. Beiträge können Vorhersagen enthalten, die auf Erwartungen an zukünftige Ereignisse beruhen, die zur Zeit der Erstellung des Beitrags in Aussicht standen. Bitte verlassen Sie sich nicht auf diese zukunftsgerichteten Aussagen.

Als Life Sciences Organisation mit Sitz in Wien möchten Sie, dass LISAvienna auf Ihre News und Events hinweist? Senden Sie uns einfach Ihre Beiträge an news(at)lisavienna.at.